Rolf Movement®
Faculty Perspectives

By Kevin Frank, Certified Advanced Rolf™
Rolf Movement® Instructor

A
trueism in the political world is
that all politics is local. In the world of psychological security, it is fair to say
that all security is local. The topic of body security begins by asking you to consider
your image of personal (local) security.

When you hear the word “security,” what
do you think of? A secure sense of family or relationship? Adequate employment?
Money? Food? Shelter? Health? Youth? Beauty? All these aspects of security can, in
fact, be part of one’s security. These forms of security represent a hedge against failure
at some point in the future.

To one degree or another, conventional
forms of security dwell in the realm of time,
which is part of our cognitive imagination. This is not to diminish their importance.
But it opens the door to consider other
dimensions of security, namely security that
belongs to the realm of space as opposed
to time. Space, or spatial location, is the
foundation on which cognitive reasoning,
and time and object recognition, depend.
Remove our spatial security and the other
forms of security are not of much use.

Spatial security lies truly at the heart
of body security, and body security is
at the heart of structural integration.
Body security is a foundational issue for
structural integration. Security underlies
availability to change. We resist change
when we are afraid, no matter how alluring
the promise of improvement. What offers
the kind of security that helps bodies to
consider new options?

Structural integration rests on the
philosophy that body security depends on
the fundamental question, “Where Am I?”

Where is my up? Where is my down? How
does the differentiated space within and
outside my body locate me and shape the
sense of being here at this moment? Without
location, our brain cannot meaningfully
function. Without location, our body cannot
choreograph movement and posture.

To answer the “where am I?” question,
the body relies on the vestibular system
because it acts like a carpenter’s plumb
bob (pendulum) to tell the body where
“down” is; the body relies on stretch
receptors, pressure receptors, and other
mechanoreceptors throughout the body.

These receptors organ systems “what” aspect of the brain is
both helpful and not helpful to movement
brain function. In some instances, the
“what” aspect of the brain can interrupt the
movement brain. Orientation to object
identification, to personal narrative: all of
these are forms of orientation that locate us
temporally (in time), rather than spatially.
Temporal orientation can, through habit,
substitute for spatial orientation. One
derives a sense of orientation from the
story of one’s life, or from one’s calendar,
or by naming one’s familiar surroundings.
Psychological security depends on a
healthy narrative about personal history,
but our movement can become less skillful
to the degree to which our “what” function
interrupts (dominates) “where” function in
movement. For example, if we focus on an
image of how we are supposed to move, or
when we are supposed to move, this type of
focus can limit the optimum flow of
movement.

One way to observe the “where and what”
model in action is to observe how a person
uses his/her eyes. We have two separate pathways that begin at the retina of the eye but separate at the primary visual cortex in the back of the brain. One pathway is for peripheral vision and the other is for focused vision.

Peripheral vision is “where” vision. It doesn’t mean looking out of the corner of the eye, although peripheral vision has a broad field of view. It means the mode of sight in which the eyes connect to subcortical parts of the brain, to the *where* part of the brain. To see with peripheral vision means receptive vision and links to weight orientation. The experience is that the light and images come to you, land in you, and link to the feeling of weight/volume sense in your body.

Focused vision forms a separate pathway from peripheral vision. Focused vision focuses. It can be focused on objects, colors, or details that one is looking at, or a focused gaze can be a vacant stare in which one internally views a mental image, an image of the inside of one’s body, or a body part, or an image of how one looks in a movement, and so on. Focused vision speaks to the cortical aspect of our brain, the *what* aspect of orientation.

We can use a peripheral gaze to “interrupt the interruption” that may occur from over-dominance of the focused gaze. That is, if cortical processes have compromised movement response, we can release this inhibition with a peripheral gaze. For example, if one’s gaze is focused on a mental image of how to throw a ball, while actually making a throw, the focused gaze can be noticed by an observer. One will detect “muscular focus” in doing the movement as well. Inviting the ball thrower to sense space, not only with the eyes but with the whole body, may improve the person’s coordination. In this example, movement inhibition associated with *what* use of eyes (focused) is interrupted by a *where* use of eyes (peripheral). *Where* orientation restores through a shift in the mode of gaze. When we “feed” the movement brain with *where* information, the body often shows improvement in motor control (coordination) — improved flow.

Peripheral gaze is quite specific in the types of information it gathers: light and dark, outline, movement, shape, size, depth perception, figure/ground separation. Peripheral gaze is fast because of its shorter pathways to the subcortical aspects of the brain. It is also color blind – peripheral gaze sees the world in gray scale. Focused vision gathers information for object recognition, and sees detail with acuity. It is color-aware and is usually slower than peripheral because it is linked to the activity of cognition — making for more processing time in the brain.

(You can experiment to feel this shift in your own body. See if you can shift your attention between a mood of peripheral gaze and one of focused gaze. In addition to attending to the differences mentioned above, you may find peripheral gaze assisted by noticing a sense of weight in your body, or a sense of your volume or your skin boundary.)

People can use peripheral gaze and focused gaze simultaneously. This is actually our natural manner of function. In healthy movement and perceptive activity, the distinction between where and what outweighs its usefulness.

It helps to gain skill in using and feeling peripheral vision, and in feeling the shift to focused gaze, so it becomes a distinct and recognizable experience. We perceive the distinction in another when we know it in ourselves. Working on peripheral vision is a form of “body building.” Skill at shifting to peripheral vision is assisted by changing the orientation in other sensory channels such as hearing and touch. With each sense we can practice finding the two gravity orientations of each sense: weight orientation for each sense and space orientation for each sense. (Practice with peripheral gaze also strengthens the capacity to maintain robust sensory awareness while the eyes remain open.)

A sense of feeling body location, feeling the present location, supported by a differentiation of the space within and without is our natural state. Posture and coordination are indicators of the relative level of security in sensing location, as a person’s restored body security is an expression of structural integration.

In the simplicity of a body sensing its location, we may notice something else as well: an awareness of the present moment, a quality of relative quiet underlying the activities of life. Stillness manifests in the stability of orientation that isn’t built on the sense of time; mind noise is our mental maneuvering around issues of security.

Orientation is relevant to movement because the body makes orientation to “where am I?” a priority. Our body insists on locating itself because of a need for security at a biological level, below the level of story. If we support orientation with perceptive skills, the movement brain makes coordinative choices that are congruent with the goals of structural integration.

Endnotes

1. At moments in which spatial location fails us – such as in transition from anesthesia, during episodes of labyrinthitis, or other neurological impairments that affect orientation – we realize directly our fundamental dependence on the basic sense of up and down to organize perception of body and world.

2. Working with thought processes is a necessary part of resolving movement issues. We must address psychological meaning as part of the movement process. In the experience of movement, however, perceptive skill involves abstaining from cortical control of the body. Orientation to “where” is a skill that helps to do this.

Resources

For a discussion of posture and perception, and the idea of the “movement brain,” see the articles, “Posture and Perception” and “Body as a Movement System” and other writings at www.resourcesinmovement.com.

For conceptual and graphic representations of *where* and *what* vision, see *Vision and Art: The Biology of Seeing*, by Margaret Livingstone, Ph.D. (New York: Harry N. Abrams, 2002.)

Jacques Pailliard proposed this model for many decades as a means of bridging the world of cognitive psychology and neuroscience; for his precisely reasoned analysis of *where* and *what* aspects of movement control, see the article “Sensorimotor versus representational framing of Body Space, A neural basis for a distinction between Body schema and Body image” in V. Knockaert and H. De Preester (eds.) *Body Image and Body Schema: Interdisciplinary Perspectives* (Amsterdam: John Benjamin, 2004).